Graph classes and Ramsey numbers
نویسندگان
چکیده
For a graph class G and any two positive integers i and j, the Ramsey number RG(i, j) is the smallest positive integer such that every graph in G on at least RG(i, j) vertices has a clique of size i or an independent set of size j. For the class of all graphs, Ramsey numbers are notoriously hard to determine, and they are known only for very small values of i and j. Even if we restrict G to be the class of claw-free graphs, it is highly unlikely that a formula for determining RG(i, j) for all values of i and j will ever be found, as there are infinitely many nontrivial Ramsey numbers for claw-free graphs that are as difficult to determine as for arbitrary graphs. Motivated by this difficulty, we establish here exact formulas for all Ramsey numbers for three important subclasses of claw-free graphs: line graphs, long circular interval graphs, and fuzzy circular interval graphs. On the way to obtain these results, we also establish all Ramsey numbers for the class of perfect graphs. Such positive results for graph classes are rare: a formula for determining RG(i, j) for all values of i and j, when G is the class of planar graphs, was obtained by Steinberg and Tovey (J. Comb. Theory Ser. B 59 (1993), 288–296), which seems to be the only previously known result of this kind. We complement our aforementioned results by giving exact formulas for determining all Ramsey numbers for several graph classes related to perfect graphs.
منابع مشابه
Ramsey numbers of ordered graphs
An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number ...
متن کاملThe Size-ramsey Number
The size-Ramsey number of a graph G is the smallest number of edges in a graph Γ with the Ramsey property for G, that is, with the property that any colouring of the edges of Γ with two colours (say) contains a monochromatic copy of G. The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and Schelp in 1978, when they investigated the size-Ramsey number of certain classes o...
متن کاملAll Ramsey (2K2,C4)−Minimal Graphs
Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...
متن کاملAvoidance colourings for small nonclassical Ramsey numbers
The irredundant Ramsey number s = s(m,n) [upper domination Ramsey number u = u(m,n), respectively] is the smallest natural number s [u, respectively] such that in any red-blue edge colouring (R,B) of the complete graph of order s [u, respectively], it holds that IR(B) ≥ m or IR(R) ≥ n [Γ(B) ≥ m or Γ(R) ≥ n, respectively], where Γ and IR denote respectively the upper domination number and the ir...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 173 شماره
صفحات -
تاریخ انتشار 2014